Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131146, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561116

RESUMO

Diseases caused by pathogens severely hampered the development of aquaculture, especially largemouth bass virus (LMBV) has caused massive mortality and severe economic losses to the culture of largemouth bass (Micropterus salmoides). Considering the environmental hazards and human health, effective and environmentally friendly therapy strategy against LMBV is of vital importance and in pressing need. In the present study, a novel nanobody (NbE4) specific for LMBV was selected from a phage display nanobody library. Immunofluorescence and indirect ELISA showed that NbE4 could recognize LMBV virions and had strong binding capacity, but RT-qPCR evidenced that NBE4 did not render the virus uninfectious. Besides, antiviral drug ribavirin was used to construct a targeted drug system delivered by bacterial nanocellulose (BNC). RT-qPCR revealed that NbE4 could significantly enhance the antiviral activity of ribavirin in vitro and in vivo. The targeted drug delivery system (BNC-Ribavirin-NbE4, BRN) reduced the inflammatory response caused by LMBV infection and improved survival rate (BRN-L, 33.3 %; BRN-M, 46.7 %; BRN-H, 56.7 %)compared with control group (13.3 %), ribavirin group (RBV, 26.7 %) and BNC-ribavirin (BNC-R, 40.0 %), respectively. This research provided an effective antiviral strategy that improved the drug therapeutic effect and thus reduced the dosage.

2.
Eur J Med Chem ; 269: 116338, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522112

RESUMO

Monogenea, a prevalent parasite in aquaculture, poses significant threats to the industry, leading to substantial losses. Current preventive measures have proven insufficient, necessitating the development of novel and effective anti-parasitic drugs. In this investigation, we obtained the full-length myosin cDNA sequence by analyzing three-generation transcriptome data, revealing a 5817-base sequence encoding 1938 amino acids. Subsequently, we modeled and analyzed the characteristics of the secondary and tertiary of myosin, pinpointing the crucial functional region within the motor domain (amino acids 1-768). The prokaryotic expression of this domain yielded a protein of 87.44 kDa, confirmed as myosin by Western Blotting. Molecular docking identified ASN439 as the key amino acid residue involved in arctigenin and myosin binding, a result corroborated by site-directed mutagenesis, affirming the active cavity of this interaction. Chalcone and shikonin were chosen from a virtual sieve of molecular library of natural drugs based on the active cavity. Chalcone and shikonin exhibited EC50 values of 1.085 mg/L and 0.371 mg/L, respectively, with corresponding IC50 values for myosin of 0.44 mM and 0.14 mM. Given its superior activity and structure, shikonin was selected for further optimization of drug molecule design, culminating in the discovery of 1,4-naphthoquinone as a potent antiparasitic agent. This compound demonstrated an EC50 of 0.047 mg/L, LC50 of 0.23 mg/L, and a TI index of 4.893. These findings collectively highlight the potential of shikonin and 1,4-naphthoquinone as alternative compounds to control Gyrodactylus infections. Further optimization of medicinal chemistry holds promise for the development of more potent 1,4-naphthoquinone analogues, offering prospects for future anthelmintic control through combinatorial or replacement strategies.


Assuntos
Anti-Helmínticos , Chalconas , Naftoquinonas , Simulação de Acoplamento Molecular , Desenho de Fármacos , Aminoácidos
3.
J Immunol ; 212(4): 551-562, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38197664

RESUMO

Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.


Assuntos
Bass , Rhabdoviridae , Vacinas , Animais , Feminino , Simulação de Acoplamento Molecular , Epitopos , Glicoproteínas , Desenvolvimento de Vacinas
4.
J Fish Dis ; 47(4): e13915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191774

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a formidable pathogen, presenting a grave menace to juvenile largemouth bass. This viral infection frequently leads to epidemic outbreaks, resulting in substantial economic losses within the aquaculture industry. Unfortunately, at present, there are no commercially available vaccines or pharmaceutical treatments to combat this threat. In order to address the urgent need for therapeutic strategy to resist MSRV infection, the antiviral activity of natural product honokiol against MSRV was explored in this study. Firstly, cellular morphology was directly observed in an inverted microscope when treated with honokiol after MSRV infection. The results clarified that honokiol significantly lessened cytopathic effect (CPE) induced by MSRV and protected the integrity of GCO cells. Furthermore, the viral nucleic acid expression (G gene) was detected by reverse transcription real-time quantitative PCR (RT-qPCR) and the results indicated that honokiol significantly decreased the viral loads of MSRV in a concentration-dependent manner, and honokiol showed a high antiviral activity with IC50 of 2.92 µM. Besides, honokiol significantly decreased the viral titre and suppressed apoptosis caused by MSRV. Mechanistically, honokiol primarily inhibited the initial replication of MSRV and discharge of progeny virus to exert anti-MSRV activity. More importantly, in vivo experiments suggested that honokiol (40 mg/kg) expressed a fine antiviral activity against MSRV when administrated with intraperitoneal injection, which led to a notable 40% improvement in the survival rate among infected largemouth bass. In addition, it also resulted in significant reduction in the viral nucleic acid expression within liver, spleen and kidney at 2, 4 and 6 days following infection. What is more, 100 mg/kg honokiol with oral administration also showed certain antiviral efficacy in MSRV-infected largemouth bass via improving the survival rate by 10.0%, and decreasing significantly the viral nucleic acid expression in liver, spleen and kidney of largemouth bass on day 2. In summary, natural product honokiol is a good candidate to resist MSRV infection and has promising application prospects in aquaculture.


Assuntos
Compostos Alílicos , Bass , Produtos Biológicos , Compostos de Bifenilo , Doenças dos Peixes , Ácidos Nucleicos , Fenóis , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/epidemiologia , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/veterinária , Antivirais/farmacologia , Antivirais/uso terapêutico
5.
Fish Shellfish Immunol ; 144: 109267, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043875

RESUMO

Streptococcosis is a highly contagious aquatic bacterial disease that poses a significant threat to tilapia. Vaccination is a well-known effective measure to prevent and control fish bacterial diseases. Among the various immunization methods, immersion vaccination is simple and can be widely used in aquaculture. Besides, nanocarrier delivery technology has been reported as an effective solution to improve the immune effect of immersion vaccine. In this study, the surface immunogenic protein (Sip) was proved to be conserved and potential to provide cross-immunoprotection for both Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae) by multiple sequences alignment and Western blotting analysis. On this basis, we expressed and obtained the recombinant protein rSip and connected it with functionalized carbon nanotubes (CNT) to construct the nanocarrier vaccine system CNT-rSip. After immersion immunization, the immune effect of CNT-rSip against above two streptococcus infections was evaluated in tilapia based on some aspects including the serum specific antibody level, non-specific enzyme activities, immune-related genes expression and relative percent survival (RPS) after bacteria challenge. The results showed that compared with control group, CNT-rSip significantly (P < 0.05) increased the serum antibody levels, related enzyme activities including acid phosphatase, alkaline phosphatase, lysozyme and total antioxidant capacity activities, as well as the expression levels of immune-related genes from 2 to 4 weeks post immunization (wpi), and all these indexes peaked at 3 wpi. Besides, the above indexes of CNT-rSip were higher than those of rSip group with different extend during the experiment. Furthermore, the challenge test indicated that CNT-rSip provided cross-immunoprotection against S. agalactiae and S. iniae infection with RPS of 75 % and 72.41 %, respectively, which were much higher than those of other groups. Our study indicated that the nanocarrier immersion vaccine CNT-rSip could significantly improve the antibody titer and confer cross-immuneprotection against S. agalactiae and S. iniae infection in tilapia.


Assuntos
Vacinas Bacterianas , Doenças dos Peixes , Nanotubos de Carbono , Infecções Estreptocócicas , Tilápia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Imersão , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Streptococcus iniae
6.
ACS Appl Mater Interfaces ; 16(1): 228-244, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38055273

RESUMO

Viral diseases have constantly caused great threats to global public health, resulting in an urgent need for effective vaccines. However, the current viral vaccines often show low immunogenicity. To counter this, we report a smart strategy of a well-designed modular nanoparticle (LSG-TDH) that recapitulates the dominant antigen SG, low-molecular-weight protamine, and tetralysine-modified H-chain apoferritin (TDH). The constructed LSG-TDH nanovaccine could self-assemble into a nanocage structure, which confers excellent mucus-penetrating, cellular affinity, and uptake ability. Studies demonstrate that the LSG-TDH nanovaccine could strongly activate both mucosal and systemic immune responses. Importantly, by immunizing wild-type and TLR2 knockout (TLR2-KO) zebrafish, we found that TLR2 could mediate LSG-TDH-induced adaptive mucosal and systemic immune responses by activating antigen-presenting cells. Collectively, our findings offer new insights into rational viral vaccine design and provide additional evidence of the vital role of TLR2 in regulating adaptive immunity.


Assuntos
Nanopartículas , Rhabdoviridae , Vacinas , Animais , Receptor 2 Toll-Like , Peixe-Zebra , Nanopartículas/química
7.
Inorg Chem ; 62(45): 18724-18731, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37917811

RESUMO

Uranium trichloride (UCl3) has received growing interest for its use in uranium-fueled molten salt reactors and in the pyrochemical processing of used fuel. In this paper, we report for the first time the experimentally determined Raman spectra of UCl3, at both ambient condition and in situ high temperatures up to 871 K. The frequencies of five of the Raman-active vibrational modes (vi) of UCl3 exhibit a negative temperature derivative ((∂νi/∂T)P) with increasing temperature. This red-shift behavior is likely due to the elongation of U-Cl bonds. The average isobaric mode Grüneisen parameter (γiP = 0.91 ± 0.02) of UCl3 was determined through use of the coefficient of thermal expansion published in Vogel et al. (2021) and the (∂νi/∂T)P values determined in this study. These results are in general agreement with those calculated here by density functional theory (DFT+U). Finally, a comparison of the ambient band positions of UCl3 to those of isostructural lanthanide (La-Eu) and actinide chlorides (Am-Cf) has been made.

8.
Microbiol Spectr ; 11(6): e0104723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855526

RESUMO

IMPORTANCE: Aquaculture is essential for ensuring global food security by providing a significant source of animal protein. However, the spread of the white spot syndrome virus (WSSV) has resulted in considerable economic losses in crustacean industries. In this study, we evaluated the antiviral activity of rhein, the primary bioactive component of Rheum palmatum L., against WSSV infection, and many pathological aspects of WSSV were also described for the first time. Our mechanistic studies indicated that rhein effectively arrested the replication of WSSV in crayfish by modulating innate immunity to inhibit viral gene transcription. Furthermore, we observed that rhein attenuated WSSV-induced oxidative and inflammatory stresses by regulating the expression of antioxidant and anti-inflammatory-related genes while enhancing innate immunity by reducing total protein levels and increasing phosphatase activity. Our findings suggest that rhein holds great promise as a potent antiviral agent for the prevention and treatment of WSSV in aquaculture.


Assuntos
Astacoidea , Vírus da Síndrome da Mancha Branca 1 , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Vírus da Síndrome da Mancha Branca 1/genética , Imunidade Inata , Antivirais/farmacologia
9.
Fish Shellfish Immunol ; 142: 109160, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858787

RESUMO

Grass carp (Ctenopharyngodon idella) is subject to a hemorrhagic disease caused by grass carp reovirus (GCRV), which can lead to mass mortality in grass carp culture, causing significant economic loss. Vaccination is the most promising strategy for the prevention of infectious diseases. Immersion vaccination is considered the most effective disease prevention method for juvenile fish because it can be implemented on many fish at once and administered without causing stress. However, immune responses by immersion vaccination are markedly less robust due to the skin barrier and insufficient antigen uptake. The display of heterologous proteins on the cell surface has been explored as a delivery system for viral antigens in veterinary and human vaccine studies. To improve the efficacy of the immersion vaccine, the major capsid protein (VP7) of GCRV was co-displayed with Aeromonas hydrophila outer membrane protein a (OmpA) and major adhesion protein (Mah) on the outer membrane surface of nonpathogenic Escherichia coli BL21 using the anchoring motif of ice-nucleation protein (Inp). The immune responses and protection efficiency against GCRV infection via both the injection and immersion routes were evaluated. The results indicated that the activities of anti-oxidant enzymes (ACP, AKP, SOD and T-AOC), as well as the expression of immune-related genes (TNF-α, IL-1ß, MHCI and IgM) and specific VP7 antibody levels, were strongly increased in the grass carp from 7 to 21 days post-injection inoculation in a dose dependent manner. The cumulative mortality rates of injection-vaccinated groups were much lower than those of the control group after the GCRV challenge, and the relative percent survival (RPS) was greater than 80 %. Vitally, the surface co-display of vp7-Mah protein conferred marked protection to grass carp against GCRV infection after immersion administration (RPS >50 %); this was consistent with the production of high level of specific serum antibodies, non-specific immune responses, and the expression of immune-related genes. Moreover, the invasion analysis further showed that surface co-display of the vp7-Mah protein indeed significantly improved the invasion of E. coli BL21 (DE3) in vitro. Altogether, this study demonstrated that surface display GCRV core antigen vaccine system accompanied by invasion component from aquatic pathogenic microorganism is an effective prophylactic against GCRV viral diseases via the immersion administration approach.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Vacinas Virais , Humanos , Animais , Escherichia coli , Imersão , Infecções por Reoviridae/prevenção & controle , Infecções por Reoviridae/veterinária , Anticorpos Antivirais
10.
Fish Shellfish Immunol ; 142: 109167, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848154

RESUMO

The largemouth bass virus (LMBV) is a commonly encountered pathogen in aquaculture and presents significant challenges to development of the largemouth bass industry due to the lack of effective treatment methods. Here, the inhibitory potential and underlying mechanisms of adamantoyl chloride (AdCl) against LMBV were assessed both in vitro and in vivo. The results showed that AdCl (IC50 = 72.35 µM) significantly inhibited replication of LMBV in epithelioma papulosum cyprini (EPC) cells. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide and cytopathic effect (CPE) assays confirmed that AdCl inhibited replication of LMBV in EPC cells and significantly reduced the CPE effect, respectively. As a potential mechanism, AdCl inhibited apoptosis as determined by fluorescence and transmission electron microscopy. The results of flow cytometry showed that the apoptosis rate was decreased by 69 % in the AdCl-treated group as compared to the LMBV-infected group. Additionally, AdCl inhibited viral release. In vivo, the survival rate was 16.2 % higher in the AdCl-treated group as compared to the LMBV-infected group (26.9 % vs. 10.7 %, respectively). Additionally, the results of quantitative reverse transcription polymerase chain reaction (RT-qPCR) showed that AdCl significantly reduced the viral load of the fish liver, spleen, and kidneys at 3, 6, and 9 days postinfection. In addition, RT-qPCR analysis found that AdCl upregulated expression of immune-related genes to suppress replication of LMBV. Collectively, these results confirmed the anti-LMBV activities of AdCl for use in the aquaculture industry.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Animais , Cloretos , Apoptose
11.
Inorg Chem ; 62(37): 14852-14862, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37671840

RESUMO

The undeniable importance of nanoparticles has led to vast efforts, in many fields of science, to understand their chemical and physical properties. In this paper, the morphology dependence of f-element nanoparticles is correlated to the oxygen environment and the type and coverage of capping ligands. This dependence was evaluated by first-principles calculations of the surface energies of different crystallographic planes (001, 110, and 111) as a function of the relative oxygen chemical potential and under the influence of different ligands. Uranium dioxide nanoparticles were the focus of this study due to their high sensitivity to oxidation compared to thorium dioxide nanoparticles, a homoleptic material but insensitive to oxidation. To fully explain the experimental observations of uranium dioxide nanocrystals, theoretical modeling shows that the consideration of surfaces with different oxidation conditions is necessary. It is shown that, for materials with low oxidation potential, such as uranium dioxide, the oxygen environment and capping ligand concentration are competing factors in determining the nanoparticle morphology.

12.
Int J Biol Macromol ; 253(Pt 1): 126670, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660857

RESUMO

Streptococcal disease has severely restricted the development of global tilapia industry, which is mainly caused by Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae). Vaccination has been proved to be a potential strategy to control it. In this study, a multi-epitope subunit vaccine Sip-Srr (SS) was prepared based on the B-cell antigenic epitopes prediction and multiple sequence alignment analysis of Sip and Srr sequences. Furthermore, the BNC-rSS nanocarrier vaccine system was constructed by connecting the rSS protein with modified bacterial nanocellulose (BNCs) and characterized by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope, the immersion immune effect against S. agalactiae and S. iniae infection was evaluated. The results showed that compared with the control group, BNC-rSS significantly enhanced serum antibody production, related enzyme activities and immune-related genes expression. It was noteworthy that BNC-rSS vaccine improved immune protection of tilapia, with survival rates of 66.67 % (S. agalactiae) and 60.00 % (S. iniae), respectively, compared with those of rSS vaccine (30 % and 33.33 %, respectively). Our study indicated that the BNC-rSS nanovaccine could elicit robust immune responses in tilapia by immersion immunization, and had the potential to offer cross-protection against S. agalactiae and S. iniae infection in tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Streptococcus agalactiae , Streptococcus iniae , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Vacinas Bacterianas
13.
J Fish Dis ; 46(12): 1413-1423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705318

RESUMO

Aeromonas hydrophila and A. veronii are widespread and important critical pathogenic bacteria in the aquaculture industry and cause severe economic damage. At present, magnolol has been proved to be a broad-spectrum antibacterial activity, such as A. hydrophila, Staphylococcus aureus and Streptococcus mutans. In order to explore the cause of in vivo disease resistance of magnolol and promote its safe application in aquaculture, the pathological detection and changes in immune indicators of fish after feeding with magnolol were conducted in this paper. Results showed that the diets supplemented with magnolol (3 g magnolol/kg commercial feed) significantly increase the expression level of anti-inflammatory cytokines (IL-10, TGF-ß and IL-4) in the liver of goldfish (p < .05). Additionally, the expression levels of proinflammatory cytokines (IL-1ß, IL-8 and IFN-γ) did not increase significantly. Subsequently, this study investigated the resistance of goldfish to A. hydrophila and A. veronii infection after feeding with magnolol. The results showed that the survival rates of treatment groups fed 3 g magnolol/kg commercial feed daily increased by 23.1% and 38.5% after 10 days post A. hydrophila and A. veronii (p = .0351) infection, respectively. Meanwhile, growth performance (body weight and length), major internal organs (liver, spleen, kidney and intestine) and the serum biochemistry indicators (ATL and AST) all exhibited no significant adverse effects after the goldfish fed with magnolol for 30 days. TP showed an increasing concentration in the treatment group (p < .05). Results of the mRNA expression of stress response indicated that the expression level of cyp1a and hsp70 was significantly down-regulated after a 30-day treatment (p < .05), and the two genes recovered to the similar level as the control group after a commercial feed diet. In brief, the diets supplemented with magnolol protected the host from the excessive immune response caused by A. hydrophila and A. veronii via enhancing its anti-inflammatory capacity and had no adverse effects with feeding.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Carpa Dourada/genética , Aeromonas hydrophila/fisiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Dieta/veterinária , Resistência à Doença , Citocinas , Ração Animal/análise , Aeromonas veronii
14.
Vaccines (Basel) ; 11(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37515077

RESUMO

Tilapia, as one of the fish widely cultured around the world, is suffering severe impact from the streptococcus disease with the deterioration of the breeding environment and the increasing of breeding density, which brings serious economic loss to tilapia farming. In this study, the surface immunogenic protein (Sip) of Streptococcus agalactiae (S. agalactiae) was selected as the potential candidate antigen and connected with bacterial nano cellulose (BNC) to construct the nanocarrier subunit vaccine (BNC-rSip), and the immersion immune effects against S. agalactiae and Streptococcus iniae (S. iniae) in Nile tilapia were evaluated on the basis of the serum antibody level, non-specific enzyme activity, the immune-related gene expression and relative percent survival (RPS). The results indicated that Sip possessed the expected immunogenicity according to the immunoinformatic analysis. Compared with the rSip group, BNC-rSip significantly induced serum antibody production and improved the innate immunity level of tilapia. After challenge, the RPS of BNC-rSip groups were 78.95% (S. agalactiae) and 67.86% (S. iniae), which were both higher than those of rSip groups,31.58% (S. agalactiae) and 35.71% (S. iniae), respectively. Our study indicated that BNC-rSip can induce protective immunity for tilapia through immersion immunization and may be an ideal candidate vaccine for controlling tilapia streptococcal disease.

15.
Mol Ecol Resour ; 23(8): 1841-1852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475144

RESUMO

Topmouth culter (Culter alburnus) is an ecologically and economically important species belonging to the subfamily Culterinae that is native to and widespread in East Asia. Intraspecific variation of semi-buoyant and adhesive eggs in topmouth culter provides an ideal opportunity to investigate the genetic mechanisms of spawning habits underlying the adaptive radiation of cyprinids in East Asia. In this study, we present a chromosome-level genome assembly of topmouth culter and re-sequenced 158 individuals from six locations in China covering three geographical groups and two egg type variations. The topmouth culter genome size was 1.05 Gb, with a contig N50 length of 17.8 Mb and anchored onto 24 chromosomes. Phylogenetic analysis showed that the divergence time of the Culterinae was coinciding with the time of initiation of the Asian monsoon intensification. Gene family evolutionary analysis indicated that the expanded gene families in topmouth culter were associated with dietary adaptation. Population-level genetic analysis indicated clear differentiation among the six populations, which were clustered into three distinct clusters, consistent with their geographical divergence. The historical effective population size of topmouth culter correlated with the Tibetan Plateau uplifting according to the demographic history reconstruction. A selective sweep analysis between adhesive and semi-buoyant egg populations revealed the genes associated with the hydration and adhesiveness of eggs, indicating divergent selection towards different hydrological environments. This study offers a high-resolution genetic resource for further studies on evolutionary adaptation, genetic breeding and conservation of topmouth culter, providing insights into the molecular mechanisms for egg type variation of East Asian cyprinids.


Assuntos
Adesivos , Cyprinidae , Humanos , Animais , Filogenia , Cyprinidae/genética , Sequência de Bases , Cromossomos
16.
Microbiome ; 11(1): 135, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322528

RESUMO

BACKGROUND: Pathogen infections seriously affect host health, and the use of antibiotics increases the risk of the emergence of drug-resistant bacteria and also increases environmental and health safety risks. Probiotics have received much attention for their excellent ability to prevent pathogen infections. Particularly, explaining mechanism of action of probiotics against pathogen infections is important for more efficient and rational use of probiotics and the maintenance of host health. RESULTS: Here, we describe the impacts of probiotic on host resistance to pathogen infections. Our findings revealed that (I) the protective effect of oral supplementation with B. velezensis against Aeromonas hydrophila infection was dependent on gut microbiota, specially the anaerobic indigenous gut microbe Cetobacterium; (II) Cetobacterium was a sensor of health, especially for fish infected with pathogenic bacteria; (III) the genome resolved the ability of Cetobacterium somerae CS2105-BJ to synthesize vitamin B12 de novo, while in vivo and in vitro metabolism assays also showed the ability of Cetobacterium somerae CS2105-BJ to produce vitamin B12; (IV) the addition of vitamin B12 significantly altered the gut redox status and the gut microbiome structure and function, and then improved the stability of the gut microbial ecological network, and enhanced the gut barrier tight junctions to prevent the pathogen infection. CONCLUSION: Collectively, this study found that the effect of probiotics in enhancing host resistance to pathogen infections depended on function of B12 produced by an anaerobic indigenous gut microbe, Cetobacterium. Furthermore, as a gut microbial regulator, B12 exhibited the ability to strengthen the interactions within gut microbiota and gut barrier tight junctions, thereby improving host resistance against pathogen infection. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Vitamina B 12/farmacologia , Probióticos/farmacologia , Vitaminas
17.
Fish Shellfish Immunol ; 139: 108920, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385462

RESUMO

Spring viraemia of carp virus (SVCV), a highly pathogenic rhabdovirus, could cause spring viraemia of carp (SVC) with up to 90% lethality. Like other rhabdoviruses, the entry of SVCV into susceptible cells was mediated by a single envelope glycoprotein G. Specific inhibitors targeting the glycoprotein were the most effective means to alleviate the epidemic. The programs including SWISS-MODEL, I-TASSER, Phyre2 and AlphaFold2 were used to build a three-dimensional structural model of glycoprotein. The structural comparison between SVCV-G and homology protein VSV-G revealed that the SVCV glycoprotein ectodomain (residues 19 to 466) folded into four distinct domains. Based on the potential small molecule binding sites on glycoprotein surfaces, virtual screening of the anti-SVCV drug libraries was performed using Autodock software and 4'-(8-(4-Methylimidazole)-octyloxy)-arctigenin (MOA) with a high binding affinity was identified. The solubility enhancer tags including trigger factor and maltose binding protein were fused with the ectodomain of glycoprotein, and the target protein with a purity of about 90% was successfully obtained. The interaction confirmation tests revealed that the fluorescence intensity of a characteristic peak induced by the endogenous chromophores in glycoprotein was decreased with the addition of MOA, indicating changes in the microenvironment of glycoprotein. Moreover, the interaction could cause a slight conformational change in glycoprotein, as shown by the content of ß-turn, ß-folding, and random coil of protein all increased with the decrease of α-helix content after the addition of MOA compound. These results demonstrated that MOA could act as a novel drug against fish rhabdovirus via direct targeting of glycoprotein.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Infecções por Rhabdoviridae/veterinária , Glicoproteínas/metabolismo , Peixes/metabolismo , Carpas/metabolismo
18.
Fish Shellfish Immunol ; 135: 108693, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36940785

RESUMO

Largemouth bass (Micropterus salmoides), one of the most important freshwater commercial fish species has been widely cultivated in China. In recent years, the nocardiosis caused by Nocardia seriolae has greatly damaged the M. salmoides industry and there is no effective treatment at present. Currently, Cetobacterium somerae, the predominant bacteria in the gut of many freshwater fishes has been reported to be associated with fish health. However, whether the native C. somerae could protect the host from N. seriolae is unclear. In this study, M. salmoides were fed with three different diets, including control diet (CD), low C. somerae diet (106 CFU/g as LD) and high C. somerae diet (108 CFU/g as HD). After 8-week feeding, growth performance, gut health index, serum enzyme activities and the expression of inflammation-related genes were tested. Results showed that the LD and HD diets had no adverse effects on the growth performance. Moreover, dietary HD enhanced gut barrier and reduced intestinal ROS and ORP, as well as increased serum enzyme activities including ACP, AKP, SOD and LZM compared to the CD group. In addition, the HD diet significantly up-regulated the expression of TNF-α, IL8, IL-1ß and IL15, while down-regulating the expression of TGF-ß1 and IL10 in kidney. Moreover, the expression of antibacterial genes was significantly increased in HD group after being challenged by N. seriolae. And the fish fed HD diet exhibited higher survival rate (57.5%) than that in CD (37.5%) and LD groups (42.5%). To summarize, our study demonstrates that dietary HD can enhance gut health, improve immune response and strengthen pathogen resistance, suggesting that C. somerae is a potential probiotic for defending against N. seriolae infection in M. salmoides.


Assuntos
Bass , Nocardia , Animais , Bass/genética , Dieta/veterinária
19.
Microbiol Spectr ; : e0427322, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975994

RESUMO

Probiotics are an alternative strategy for antibiotics, but most probiotics are Gram-positive bacteria suitable for terrestrial animals. Therefore, it is imperative to develop dedicated probiotics for the common carp industry to be ecologically efficient and environmentally friendly. A novel Enterobacter asburiae named E7 was isolated from the intestine of healthy common carp and displayed an extensive antibacterial spectrum against Aeromonas hydrophila, A. veronii, A. caviae, A. media, A. jandaei, A. enteropelogenes, A. schubertii, A. salmonicida, Pseudomonas aeruginosa, Ps. putida, Plesiomonas shigelloides, and Shewanella. E7 was nonpathogenic to the host and susceptible to the majority of antibiotics used in human clinical practice. E7 could grow between 10 and 45°C and between pH 4 and 7 and was extremely resistant to 4% (wt/vol) bile salts. Diets were supplemented with 1 × 107 CFU/g E. asburiae E7 for 28 days. No significant difference in the growth of fish was observed. Expression of immune-related genes IL-10, IL-8, and lysozyme in common carp kidney was significantly upregulated at weeks 1, 2, and 4 (P < 0.01). A significant upregulation of IL-1ß, IFN, and TNF-α expression was observed after week 4 (P < 0.01). There was a significant increase in mRNA expression of TGF-ß at week 3 (P < 0.01). Following challenge by Aeromonas veronii, the survival rate (91.05%) was significantly higher than observed in the controls (54%; P < 0.01). Collectively, E. asburiae E7 is a promising new Gram-negative probiotic that can enhance health and bacterial resistance of aquatic animals and could thus be developed as an exclusive aquatic probiotic. IMPORTANCE In the present study, we evaluated for the first time the efficiency of Enterobacter asburiae as a prospective probiotic for aquaculture applications. The E7 strain showed extensive resistance to Aeromonas, no pathogenicity to the host, and stronger environmental tolerance. We observed that the resistance of common carp to A. veronii was enhanced by feeding a diet containing 1 × 107 CFU/g E. asburiae E7 for 28 days, but growth was not improved. Strain E7 can act as an immunostimulant to induce the upregulation of some innate cellular and humoral immune responses, resulting in enhanced resistance to A. veronii. Hence, the continuous activation of immune cells can be maintained by adding suitable fresh probiotics to the diet. E7 has the potential to act as a probiotic agent for green, sustainable aquaculture and aquatic product safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...